1	D
2	В
3	С
4	D
5	D
6	В
7	С
8	A
9	A
10	В
11	D
12	D
13	D
14	В
15	С
16	В
17	С
18	D
19	С
20	В

1	1(a)(i)	oxygen/O ₂
-	1(a)(ii)	lithium/Li
-	1(a)(iii)	aluminium/A1
-	1(a)(iv)	argon/Ar
-	1(a)(v)	nickel/Ni
-	1(a)(vi)	lithium/Li
-	1(b)	number of electrons for Ni = 28
		number of electrons for O ²⁻ = 10
		number of neutrons Ni = 34 AND O ²⁻ = 10
		number of protons for O ²⁻ = 8
	2(a)(i)	A placed either on the left hand lower tube (or on the one on the right directly opposite this)
		W placed on both or either of the tubes at the top
	2(a)(ii)	the slag is above the molten iron/the iron is below the molten slag
	2(b)(i)	breakdown of a substance/breakdown of a compound
		using heat/using high temperature
	2(b)(ii)	CO ₂
	2(b)(iii)	calcium oxide reacts with silicon(IV) oxide/sand
		to form calcium silicate/slag
	2(c)	apparatus correctly set up with two rods dipping into a liquid
		completed circuit with cell/power pack
		electrode(s) AND electrolyte correctly labelled
	2(d)(i)	graphite/platinum/(pure) iron
	2(d)(ii)	conducts electricity/inert

3	(a)	physical properties [max 3], e.g.:	
	(b)	nickel, zinc, magnesium, calcium one consecutive pair reversed/all reversed scores [1]	
	(c)(i)	atoms with the same number of protons and different numbers of neutrons	
	(C)(ii)	energy (production)/nuclear power	
4	(a)	M1 filter	
		M2 wash (the residue) using water	
		M3 dry the residue between filter papers/in a warm place	
-	(c)	M1 Universal Indicator turns blue	
		M2 ammonia/NH ₃ (is made)	
-	(d)(i)	M1 dichromate ions/particles are heavier (than silver ions)	
		M2 so dichromate ions diffuse/move more slowly ORA	
		M3 (where they meet they react and) silver dichromate is made	
	(d)(ii)	M1 red solid forms in less than five minutes or red solid forms faster/sooner	
		M2 particles / ions move faster	
-	(e)(i)	M1 breaking down	

(a)(i)	arrow labelled A on or near wire going in an anti-clockwise direction
(a)(ii)	arrow labelled B in electrolyte pointing towards the cathode
(b)(i)	electrons are lost
(b)(ii)	M1 Cu ²⁺ ions on left
	M2 rest of equation correct and correctly balanced (Cu²+ + 2e⁻ → Cu scores [2])
(c)	M1 anode mass decreases
	M2 copper lost as <u>ions</u> OR copper (atoms) becomes <u>ions</u> OR Cu → Cu ²⁺ + 2e ⁻
	M3 cathode mass increases
	M4 copper deposited/layer of copper forms/copper collected at cathode OR $Cu^{2+} + 2e^- \rightarrow Cu$
(a)(i)	M1 (relative formula mass BaCO ₃ =) 197
	M2 (10.0/197 =) 0.0508 (0.0508 alone scores [2])
(a)(ii)	1.22
(b)	2.24
(c)(i)	0.00219
(c)(ii)	M1 moles HC l = 2 × 0.00219 OR correct evaluation of this (= 0.00438)
	M2 (0.00438/0.01875) = 0.234 (0.234 alone scores [2])
1(a)	electrode(s)
1(b)	diagram of test-tube over either electrode
	containing liquid
1(c)	test: glowing splint result: relights
1(d)(i)	carbon dioxide
1(d)(ii)	oxygen reacted with carbon
1(e)	solution became more acidic/more concentrated
	water was broken down/electrolysed
	(a)(ii) (b)(i) (b)(ii) (c) (a)(ii) (a)(ii) (b) (c)(i) (c)(ii) (c)(ii) (d)(ii) (d)(ii)